Advanced Accelerator Applications Technical Quarterly Review

(Covering January-June 2002)

UREX Hot Demonstration

WBS 1.24.02.01

Major Thompson, Project Leader July 9, 2002

Scope of UREX HOT Demonstration

Dresden Fuel History

- BWR fuel irradiated to 28,000 MWD/MT
- Discharged 9/1/75
- MC&A records 3.98 kg U, 28.54 g Pu
- Cut into 3-4 inch length and placed in cans
- Stored at SRTC since 1979
- Similar material at ORNL contained on 7/31/2000
 - 2.5 g Am and Cm
 - 163 Ci Sr⁹⁰ and 169 Ci Cs¹³⁷

Dresden Fuel Dissolution

- Dissolver ~6 L total volume
- Dissolved in HNO₃ at 90°C
 - Started with 4 M HNO₃; added increments of 10 M HNO₃
 - 3 batches required
 - ~14 hours heating time per batch
 - Hulls leached with fresh acid for next batch
 - Interior and exterior of hulls clean
 - Fine black undissolved solids collected
 - Total weight of material into dissolver 4.6 kg

Dresden Fuel Being Dissolved

$$UO_{2} + 4 HNO_{3}$$
 $UO_{2}(NO_{3})_{2} + 2 NO_{2} + 2 H_{2}O$

Dresden Fuel Condition

Dresden Hulls

Before Dissolution

After Dissolution

Dissolution Status

- Dissolution complete
 - 3.89 kg material dissolved, calculate 3.4 kg U
 - 7.3 L solution
 - » 1.45 M acid
 - » Density 1.724 g/mL
 - » Estimated U conc'n 469 g/L
 - Solution sampled for analysis
- Sample of cladding taken for analysis
- Undissolved solids sampled for analysis

UREX Solvent Extraction Flowsheet

AHA Radiolytic Stability

- Acetohydroxamic Acid (AHA)
 - Undergoes acid hydrolysis
 CH₃(C=O)NHOH + H⁺ CH₃COOH + NH₃OH⁺
 - Analysis by absorbance of Fe(III) complex at 505-530 nm
 - Requires controls for each test
 - Radiolytic destruction measured by difference between control and sample irradiated

Acid Dependence of Stability

Dose Dependence for AHA

Summary of Radiation Studies

- AHA is fairly stable to radiation in range of doses expected in UREX process
- Stability attributed to scavenging of radicals by products of acid hydrolysis such as acetic acid and hydroxyamine

UREX Hot Demonstration

Centrifugal Contactors in Shielded Cells

- Extraction, scrub and Tc separation in cells
- Some reconfiguration of equipment required

Actinide/Fission Product Stream

- Evaporation with rotary evaporator
- Calcination in lab muffle furnace

U Product Stream

- Strip from solvent in laboratory hood
- Evaporate and calcine aqueous U in hood

Tc Product Stream

Conversion to metal in FY03

Centrifugal Contactors for UREX Hot Demo

UREX Equipment Diagram

Status of Solvent Extraction

- Acetohydroxamic acid (AHA) and pumps at SRTC
- Solvent obtained from plant
- All NEPA and safety documentation complete
- Paperwork for French observer in approval process

Accomplishments

Completed following milestones

- SD24M0051 Complete Dissolution of Dresden Fuel
- SD24M0054 Complete radiation tests AHA
- SD24M0055 Issue report on AHA radiation stability tests
- SD24M0056 Issue report on literature search on alternative

UREX Solvent Extraction

- Pulled back schedule 2 weeks to complete in August
- Salt program tests complete this week allowing work to start July 15

FY02 Plans

- Start flush of contactors on July 15
- Complete initial UREX hot demonstration by Aug. 23
- Complete processing all Dresden fuel solution by Aug.
 30
- Complete draft report on UREX hot demonstration by Sept. 27
- Complete procurement & set up of equipment for UREX raffinate evaporation by Sept. 20